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ABSTRACT Traditional antibiotics target essential cellular components or metabolic
pathways conserved in both pathogenic and nonpathogenic bacteria. Unfortunately,
long-term antibiotic use often leads to antibiotic resistance and disruption of the overall
microbiota. In this work, we identified a phenylamino acetamide compound, named
187R, that strongly inhibited the expression of the type III secretion system (T3SS) encod-
ing genes and the secretion of the T3SS effector proteins in Pseudomonas aeruginosa.
T3SS is an important virulence factor, as T3SS-deficient strains of P. aeruginosa are greatly
attenuated in virulence. We further showed that 187R had no effect on bacterial growth,
implying a reduced selective pressure for the development of resistance. 187R-mediated
repression of T3SS was dependent on ExsA, the master regulator of T3SS in P. aeruginosa.
The impact of 187R on the host-associated microbial community was also tested using
the Arabidopsis thaliana phyllosphere as a model. Both culture-independent (Illumina
sequencing) and culture-dependent (Biolog) methods showed that the application of
187R had little impact on the composition and function of microbial community com-
pared to the antibiotic streptomycin. Together, these results suggested that compounds
that target virulence factors could serve as an alternative strategy for disease manage-
ment caused by bacterial pathogens.

IMPORTANCE New antimicrobial therapies are urgently needed, since antibiotic resist-
ance in human pathogens has become one of the world’s most urgent public health
problems. Antivirulence therapy has been considered a promising alternative for the
management of infectious diseases, as antivirulence compounds target only the viru-
lence factors instead of the growth of bacteria, and they are therefore unlikely to
affect commensal microorganisms. However, the impacts of antivirulence compounds
on the host microbiota are not well understood. We report a potent synthetic inhibitor
of the P. aeruginosa T3SS, 187R, and its effect on the host microbiota of Arabidopsis.
Both culture-independent (Illumina sequencing) and culture-dependent (Biolog) meth-
ods showed that the impacts of the antivirulence compound on the composition and
function of host microbiota were limited. These results suggest that antivirulence com-
pounds can be a potential alternative method to antibiotics.
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P seudomonas aeruginosa is an opportunistic human pathogen that causes acute
and chronic infections in immunocompromised populations, such as cystic fibrosis

(CF) patients (1). This pathogen is the major cause of lung infection and the leading
cause of morbidity and mortality in CF patients (2). Although less known, P. aeruginosa
can also infect plants, including Arabidopsis (3, 4). To date, antibiotics are the most
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widely used therapies for treating human infections caused by P. aeruginosa (5); how-
ever, as antibiotic therapies target cellular components and/or metabolic pathways
essential for bacterial survival (i.e., cell wall synthesis and protein synthesis), the strong
selective pressure caused by excessive antibiotic administration leads to the develop-
ment and enrichment of multidrug-resistant (MDR) forms of P. aeruginosa (6, 7). In
addition, the therapeutic targets of antibiotics are conserved in a wide range of nonpa-
thogenic bacteria; as a result, antibiotic therapies alter host-associated microbiota, such as
gut microbiota (8, 9), and can lead to serious health problems, such as Clostridium difficile
infection and inflammatory bowel disease (10, 11). Recovery of microbiota after antibiotic
treatment with antibiotics can take years (12), which could potentially shorten the life
span of the host (9, 13). While resistance to newly discovered antibiotics is nearly inevitable
(14), alternative anti-infection therapies that alleviate the occurrence of antibiotic resist-
ance and preserve the microbiota are urgently needed.

Antivirulence therapy has emerged as a promising alternative therapeutic strategy
for the management of bacterial infections. This therapy targets bacterial virulence
instead of survival; therefore, it exerts little or no selective pressure over the bacteria
and reduces the emergence of resistance (15, 16). Moreover, the narrow-spectrum na-
ture of targeting virulence factors of the pathogen has the potential advantage of min-
imizing the damage to the host microbiota (17). One of the essential virulence factors
for the pathogenicity of P. aeruginosa, particularly for acute infection, is the type III
secretion system (T3SS) (18). T3SS is a needle-like structure that directly translocates
type III effector proteins from the bacterial cytoplasm into the host cells (19), causing
not only damage of the host tissue but also the death of immune cells, such as macro-
phages (20). It has been shown that a fully functional T3SS is critical for disease initia-
tion and pathogen survival in the early stages of infection (21). Thus, T3SS is an excel-
lent target for the development of a new antivirulence therapy.

In P. aeruginosa, the expression of genes encoding the T3SS secretion apparatus,
effectors, and other T3SS-secreted proteins is under the control of the master regulator
ExsA, an AraC family transcriptional activator (22). Mutation of exsA yielded a complete
repression of T3SS gene expression and abolishment of the T3SS-mediated cytotoxicity
in cultured mammalian cells (23). The activity and function of ExsA are regulated by a
partner switch mechanism mediated by three proteins, ExsC, ExsD, and ExsE (24).
Under a condition of low calcium or during host cell contact, ExsE, an antagonistic pro-
tein of ExsC, is secreted from bacterial cells. The absence of ExsE then frees ExsC to
bind ExsD, an antagonistic protein of ExsA. The binding of ExsC to ExsD releases ExsA,
and the free ExsA activates the expression of the T3SS-encoding genes (25). ExsA also
autoregulates the transcription of itself by binding to the promoter of the exsCEBA operon
(exsC promoter) (26) (Fig. 1). Besides the ExsCEBA regulatory cascade, the transcription of
exsA is modulated by Vfr (virulence factor regulator)/cAMP complex and Crc (catabolite
repression control protein). The posttranscriptional regulator RsmA (repressor of secondary
metabolism) positively regulates the translation of exsA through an unknown mechanism
(27–29).

Through a synthetic compound library screening, we identified a phenylamino acet-
amide compound named 187R that potently inhibited the expression of T3SS genes in
P. aeruginosa without affecting bacterial growth. Further research demonstrated that
187R dramatically decreased the protein levels of ExsA, not via regulation of its tran-
scription or translation, suggesting that 187R likely has a posttranslational effect on
the master regulator ExsA. The impacts of 187R on the function and composition of
host-associate microbial communities were also evaluated using the phyllosphere of
Arabidopsis, a plant host of P. aeruginosa. Our data showed that 187R preserved the
composition and function of the host-associated microbial community better than
antibiotics. These results suggested that 187R is a potent antivirulence compound that
inhibits the P. aeruginosa T3SS and has little impact on the host-associated microbial
community.
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RESULTS
Screen for compounds that inhibit T3SS in P. aeruginosa. To discover compounds

that inhibited T3SS but not bacterial growth in P. aeruginosa PAO1, we screened a synthetic
compound library consisting of five different categories of compounds: category 1, phenoxy
and phenylamino acetamides (compounds 187, 187R, 187S, 373, and 412 to 416); category
2, cinchona alkaloids (382 to 387); category 3, inines (399 to 402, 405, 406, and 417 to 433);
category 4, aminophenyl propanamides and acids (407 to 411); and category 5, phenyl acryl-
ates (394 to 398) (see Table S1 in the supplemental material). The inhibitory effects on the
T3SS upon adding a 250 mM concentration of these compounds was evaluated by meas-
uring the promoter activity of exoS, encoding a T3SS effector protein, when PAO1 cells were
cultured in a T3SS-inducing medium. The screening results for all the compounds are listed
in Table S1. Among all the compounds screened, TS187, TS373, TS382, TS384, and TS405 dis-
played strong inhibition of exoS expression, in contrast to the DMSO control treatment.
Further screening in a HeLa cell infection assay suggested that all the cells incubated with
compounds at a concentration of 250 mM showed cell rounding and detachment, except
for cells exposed to compound TS187. To determine the effects of different conformational
isomers of 187, we synthesized two different 187 conformational isomers (187R and 187S)
(Fig. 2) and compared their inhibitory effects on exoS expression. While 187R strongly inhib-
ited the exoS promoter activity (Fig. 3A) without interfering with the growth of bacteria
(Fig. 3B), 187S had no T3SS-inhibitory bioactivity (Fig. 3A). The dose-dependent effectiveness
of 187R on P. aeruginosa exoS promoter activity was evaluated under the T3SS-inducing con-
dition. The minimal concentration of 187R required to reach its maximum inhibition of exoS
promoter activity was between 16.125 and 32.25mM (Fig. 3C).

187R repressed T3SS expression in P. aeruginosa PAO1 and negatively regu-
lated T3SS-mediated cytotoxicity toward mammalian cells. To determine whether
187R inhibited the expression of other T3SS genes besides exoS in P. aeruginosa PAO1,
we further measured the expression of two other representative genes of T3SS, exsD

FIG 1 Regulatory cascade of T3SS gene expression in P. aeruginosa and the effect of compound 187R. The
expression of T3SS is under the control of master regulator ExsA, an AraC family transcriptional activator.
The activity and function of ExsA are regulated by a partner switch mechanism. When triggered by the low
calcium level or host cell contact, ExsE is secreted; as a result, it frees the anti-anti-activator ExsC. ExsC then
binds to the anti-activator ExsD, and the binding of ExsC to ExsD releases ExsA. The free ExsA activates the
expression of the T3SS. 187R reduced ExsA protein abundance through a posttranscriptional mechanism.
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and exoT, which encode an antiactivator and an effector protein, respectively. The
results showed that the expression of both genes tested was significantly decreased
when bacterial cells were exposed to 187R (Fig. 4A and B), suggesting that 187R not
only inhibits the expression exoS but also of other T3SS regulon genes. As a confirma-
tion of our promoter activity results, we also measured the synthesis and secretion of
T3SS effector protein ExoS (48.3 kDa) in the presence or absence of 187R (250 mM).
Consistent with the decreased exoS promoter activity, significant reductions of the in-
tracellular and secreted ExoS protein levels were detected in the presence of 187R (Fig. 4C
and Fig. S1). Additionally, we confirmed that 187R was able to inhibit T3SS in another
P. aeruginosa strain, PAK, by probing its intracellular ExoS and ExoT protein levels (Fig. 4D).
Together, these results demonstrated that 187R greatly reduces the T3SS gene expression
and the secretion of the T3SS effector.

Next, we evaluated the activity of 187R in T3SS-mediated cytotoxicity toward mam-
malian cells. In vitro-cultured HeLa cells tightly attached to the culture plates, forming
a monolayer of mammalian cells. When exposed to P. aeruginosa, the T3SS-mediated
cytotoxicity resulted in HeLa cell rounding, lifting, and cell death (30). Our results
showed that, compared to the DMSO-treated control, which displayed cell rounding
and lifting, 187R-treated HeLa cells displayed better attachment to the plate surface at
3.5 h postinfection (Fig. 5A). The number of HeLa cells attached to the plate surface in
the 187R-treated group showed no significant differences from those infected by a
pscJ mutant (a T3SS mutant of P. aeruginosa that lacks the basal substructure of the
secretion apparatus) or of HeLa cells without inoculating bacteria (Fig. 5A). In addition
to the cell adhesion, we also observed a significant difference in cell morphology
between the 187R-treated and DMSO-treated (control) HeLa cells after P. aeruginosa
inoculation. Cell rounding, a typical phenotype observed in DMSO-treated control
HeLa cells, was not observed in the presence of 187R (Fig. 5B, C, and D), indicating that
187R reduced the T3SS-mediated cytotoxicity. In summary, 187R is a potent P. aerugi-
nosa T3SS inhibitor that reduces the P. aeruginosa T3SS under both low-calcium and
host cell contact-inducing conditions.

187R inhibited T3SS by antagonizing the master regulator ExsA without inhibi-
ting its transcription or translation. In P. aeruginosa, the expression of genes encod-
ing the secretion apparatus and T3SS effector proteins are under the control of the
master regulator ExsA (18). To elucidate the mechanism of how 187R inhibits T3SS in
P. aeruginosa, we first measured the protein levels of ExsA in the presence or absence
of 187R. ExsA protein was detected in the DMSO control, and its level was reduced by
approximately 2.5-fold in the 187R-treated samples (Fig. 6A). The transcription of exsA
could be activated through the exsC or exsA promoter region, generating exsCEBA poly-
cistronic mRNA or exsA mRNA, respectively. Therefore, two reporter plasmids meas-
uring exsC or exsA promoter activity were generated (Table 1). To determine if the
observed repression on ExsA by 187R was the result of transcriptional regulation, we
measured the promoter activity of genes exsC and exsA and found that exsC promoter
activity significantly increased (Fig. 6B). Although exsA promoter activity was

FIG 2 Synthetic routes for 187R and 187S.
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statistically different in the presence of 187R, the decrease was marginal (Fig. 6C).
Reverse transcription-quantitative PCR (qRT-PCR) analysis revealed a comparable exsA
mRNA level in the presence of 187R or DMSO (Fig. 6D), suggesting that 187R does not
inhibit the transcription of exsA.

An alternative hypothesis to account for the decreased ExsA protein level in the
presence of 187R could be that 187R hampers the translation of exsA. Since ExsA can
be synthesized from either exsCEBA polycistronic mRNA or exsA mRNA, we generated
two translational fusion reporters, including an exsCEBA9-9lacZ translation fusion and
an exsA9-9lacZ translational fusion (Fig. 7A and Table 1). We compared the translation
of exsCEBA and exsA in the presence or absence of 187R. The results showed that the

FIG 3 Effects of 187R on P. aeruginosa exoS expression and growth. (A) Promoter activity of exoS was
measured in the presence of 187R (250 mM), 187S (250 mM), or DMSO in P. aeruginosa PAO1.
Bacterial cells harboring the plasmid pProbe-AT-exoS were incubated with 187R, 187S, or DMSO for
6.5 h in T3SS-inducing medium, and the mean fluorescence intensity was measured. Data represent
the means of three biological replicates. (B) 187R did not affect the growth of P. aeruginosa. At 250
mM, 187R was added to T3SS-inducing medium. Cell density was measured every hour for 12 h. Data
represent the means of three biological replicates. (C) Evaluation of the dose-dependent effect of
187R on the promoter activity of exoS. Cells of PAO1 were cultured in T3SS-inducing media
containing various concentrations of 187R for 6.5 h, followed by the measurement of exoS promoter
activity. Student's t test was performed to compared the 187R-treated and DMSO-treated groups. ***,
P , 0.001.
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expression of exsCEBA9-9lacZ significantly increased (Fig. 7B) while the expression of
exsA9-9lacZ was not changed in the presence of 187R (Fig. 7C), suggesting that 187R
does not inhibit the translation of exsA or exsCEBA. A recent study showed that RplI, a
ribosomal large subunit protein L9, directly interacts with the 59 untranslated region
(UTR) of exsA and represses its translation (31). We confirmed that overexpression of

FIG 5 Cytotoxicity of P. aeruginosa on HeLa cells. (A) HeLa cell lifting assay. HeLa cells were incubated
with P. aeruginosa for 3.5 h in the presence of 187R or DMSO. Three replicates were monitored per
condition. Wild type, P. aeruginosa PAK; pscJ-, PAK DpscJ; no bacteria, no bacteria and only DMSO or
187R (250 mM) added into the HeLa cell culture. Significant differences were found between the
DMSO-treated wild-type infection group and all other groups (**, P , 0.01). No significant difference
was found among all other groups. (B to D) HeLa cell morphology postinfection in the presence of
DMSO (B), 187R (C), or the pscJ mutant (D). Black arrow indicates cell rounding induced by T3SS
effectors, and white arrows show normal cell morphology.

FIG 4 Expression of other T3SS genes upon 187R treatment. (A) exsD promoter activity in PAO1 treated
with 187R (250 mM) or DMSO for 6.5 h. Data represent the means of three biological replicates. (B)
exoT promoter activity in P. aeruginosa cells treated with 187R or DMSO. *, P , 0.05; ***, P , 0.001.
Data represent the means of three biological replicates. (C and D) Western blots of the protein levels of
ExoS in PAO1 (C) and PAK (D) treated with 187R and DMSO, respectively, for 6.5 h. Cross-reacting ExoT
bands are also shown. Representative data are from three independent experiments.
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rplI significantly repressed the expression of our exsA9-9lacZ translational fusion but
had a negligible impact on the empty vector (Fig. S2). In summary, our results indi-
cated that 187R reduces the protein levels of ExsA but does not affect the transcription
or translation of exsA. It is likely that 187R antagonizes ExsA protein through an
unknown mechanism at the posttranslational level.

Impact of 187R on T3SS in various Enterobacteriaceae pathogens. T3SS is a con-
served virulence factor in many Enterobacteriaceae pathogens of animals and plants.
Unlike P. aeruginosa, which processes a Ysc family T3SS, Enterobacteriaceae pathogens
such as Dickeya dadantii and Erwinia amylovora have Hrc1 family T3SSs that do not
have an ExsA ortholog (32–34). Thus, it is unlikely that 187R could inhibit the T3SS of
D. dadantii or E. amylovora. To evaluate the above hypothesis, we tested the T3SS
gene expression in D. dadantii and E. amylovora in the presence or absence of 187R.
Unlike what was observed in P. aeruginosa, expression of hrpA, which encodes the
major subunit of the T3SS Hrp pilus, was not affected when exposed to 187R in either
D. dadantii or E. amylovora under the T3SS-inducing condition (Fig. S3). On the other
hand, 187R indeed inhibited the expression of T3SS effector proteins ExoS and ExoT in
P. aeruginosa PAK (Fig. 4D), like those observed in PAO1. These results indicated that it
is likely that bacteria that process the Hrc1 T3SS family are not sensitive to 187R.

187R has the potential to not harm the host microbiome. Although it has been
proposed that antivirulence therapies can potentially minimize the damage to the
hosts’ microbiota (17), there is a lack of experimental validation of such. To address
this question and evaluate if 187R has the potential to not harm the host microbiome,
we compared the impact of 187R with that of the antibiotic streptomycin on the phyl-
losphere microbiota of Arabidopsis, a plant host of P. aeruginosa, via spraying com-
pounds on leaves. A total of 19 phyla, with Proteobacteria and Bacteroidetes as the two
most abundant ones, were observed in each of the treatment and control groups.
Compared to control groups, an altered Proteobacteria and Bacteroidetes ratio has
been observed in the microbiota of streptomycin-treated leaves. In contrast, such a
substantial change in microbes’ relative abundances was not shown in the 187R-treated
leaves (Fig. 8A). Principal-coordinates analysis (PCoA) of the microbial communities with

FIG 6 Impact of 187R on P. aeruginosa T3SS master regulator exsA. (A) PAO1 ExsA protein levels in P.
aeruginosa cells treated with DMSO or 187R (250 mM). RNA polymerase (RNAP) was used as a loading
control. (B and C) Promoter activities of PAO1 exsC (B) and PAO1 exsA (C) in P. aeruginosa cells
treated with 187R or DMSO for 6.5 h. *, P , 0.05; **, P , 0.01. Data represent the means of three
biological replicates. (D) mRNA level of exsA was measured by qRT-PCR after incubating with 187R or
DMSO for 6.5 h. The rpsL gene served as an internal control. Three independent experiments with
three technical replicates were performed. Data show one of the representative experiments.
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different treatments based on Unifrac distance showed that the streptomycin-treated
phyllosphere was well separated from the 187R- or DMSO-treated phyllosphere along
PC1 (Fig. 8B), indicating that streptomycin, but not 187R, altered the phyllosphere to a
greater extent. Overall, these results suggested that the antivirulence compound 187R has
a negligible impact on the microbial community composition compared to antibiotics.

The changes in microbial metabolic function, such as carbon metabolism, reflect
the viability and metabolism of the microbial community. To test whether the

TABLE 1 Bacteria strains, plasmids, and primers used in this study

Strain Description
Reference or
source

P. aeruginosa strains
PAO1 Wild-type strain 33
PAK Wild-type strain 34
PAK DpscJ pscJmutant of PAK 34
PAO1 DrpoS PAO1 rpoS101::aacCI 67

D. dadantii 3937 Wild-type strain Lab stock
E. amylovora 273 Wild-type strain 68
E. coli DH5a f 80dlacZDM15 D(lacZYA-argF)U169 recA1 hsdR17 deoR thi-1 supE44 gyrA96 relA1 69

Plasmids
pPROBE-AT Cloning vector for transcriptional gfp fusions; Cbr 50
exoS-gfp pPROBE-AT containing exoS promoter; Cbr 6
exoT-gfp pPROBE-AT containing exoT promoter; Cbr This study
exoD-gfp pPROBE-AT containing exoD promoter; Cbr This study
exsC-gfp pPROBE-AT containing exsC promoter; Cbr This study
exsA-gfp pPROBE-AT containing exsA promoter; Cbr This study
cdrA-gfp pPROBE-AT containing cdrA promoter; Cbr This study
pSW205 lacZ translational fusion vector carrying P. aeruginosa 1.8-kb stability fragment; Cbr 51
exsA ‘-’ lacZ pSW205 carrying exsA transcriptional start site to152 codon of exsA, driven by LacUV5 promoter This study
exsCEBA ‘-’ lacZ pSW205 carrying exsC transcriptional start site to152 codon of exsA, driven by LacUV5 promoter This study
pBBR1-MCS-5 Expression plasmid with lac promoter 70
pBBR1-MCS-5-rplI pBBR-MCS-5 containing rplI This study
pAT-hrpA pPROBE-AT containing D. dadantii hrpA promoter; Apr 71
pAT-hrpA pPROBE-AT containing E. amylovora hrpA promoter; Apr 72

Primersa

exoD-gfp
PexoD-F ATGGATCCATCGTCGACATCGCCATGGA
PexoD-R ATGAATTCGCTTCTCGGGAGTACTGCTT

exoT-gfp
PexoT-F TAGGATCCCACCAAGAGCCCGTCGCTGC
PexoT-R ATGAATTCCCAGGCGCCCGGCCACGGC

exsC-gfp
PexsC-F ATTGTCGACGCAGAAGGTCGAGGACCAGATG
PexsC-R ATTGAATTCGATACGGCCTGCGAACTCGGC

exsA-gfp
PexsA-F ATTGTCGACTACATTGCCTGCTGTTTCGG
PexsA-R ATTGAATTCGGCCAAGAGATTTGGCTCC

cdrA-gfp
PcdrA-F ATTGTCGACGCAGTTGCAGCTCGTCGAA
PcdrA-R ATTGAATTCCGGACGGACCATGAAAATCT

exsA9-9lacZ and exsCEBA9-9lacZ
translational fusion

Post exsA F AAAGAATTCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGG CGTGCTCATGGCTTTGAAAATC
Post exsA R AAAGGATCC CGCCAGGCAAAAAGTGGAAT
Post exsCEBA F AAAGAATTCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGG AGCTTTAGGAGGCGCCCCCA

rplI overexpression vector
pBBR-rplI-F TAGAACTAGTGGATCCTTACTCAGCGACGATGATCAGCTTCA
pBBR-rplI-R CGGTATCGATAAGCTTATGGAAGTCATCCTGCTGGAAAAAGT

qRT-PCR primer
rpsL F TGAAGGTCACAACCTGCAAGAGCA
rpsL R AACGACCCTGCTTACGGTCTTTGA
exsA F CAAGGGAAAGGACAGCCGAA
exsA R ACGCTCGACTTCACTCAACA

aFor primers, the description column reports the sequence (59 to 39), and underlining indicates restriction enzyme sites.
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composition of a phyllosphere in 187R- and streptomycin-treated leaves could com-
prehensively represent the corresponding functional profiles, we used an EcoPlate
assay to test the carbon metabolism (an important function related to microbe survival
and nutrient cycling) of 187R-, DMSO-, and streptomycin-treated phyllospheres. The
PCA (principal-component analysis) for carbon profiles of all nine samples suggested
that the carbon profiles of all three streptomycin-treated samples were well separated
from the DMSO- and 187R-treated samples along dimension 1 (Dim1), which explained
49.69% of the variation (Fig. 8C). Further analysis showed that in the streptomycin-
treated phyllosphere, the metabolism of nine carbon sources (2-hydroxy benzoic acid
cannot be used by the phyllosphere) was significantly decreased compared to those of
the DMSO-treated samples. However, metabolism of only one carbon source (phenyle-
thylamine) showed a significant reduction in the 187R-treated phyllosphere compared
to the DMSO-treated phyllosphere (Fig. S4). These results confirmed that there are
drastic changes in streptomycin-treated phyllosphere microbiota but not in the 187R-
treated ones, suggesting that compared to the antibiotic streptomycin, the antiviru-
lence compound 187R exhibited less impact on a microbial community’s carbon
metabolism.

DISCUSSION

A number of virulence inhibitors that target the P. aeruginosa T3SS have been dis-
covered over the past 2 decades (35–38). For example, Moir and colleagues reported
that phenoxy acetamides, including several 2,4-dichlorophenyloxy acetamides, as T3SS
inhibitors that reduced the secretion of P. aeruginosa T3SS effectors (39, 40). An attrac-
tive target for developing T3SS inhibitors is the master regulator ExsA. As all the P. aer-
uginosa T3SS genes are ExsA dependent, inhibiting the synthesis or activity of ExsA
would lead to a decrease, or even complete elimination, of all T3SS gene expression
levels. In our work, a series of 2-nitrophenylamino acetamides were synthesized and
screened. We found that compound 187R reduced ExsA protein levels in P. aeruginosa
and dramatically decreased the T3SS-mediated cytotoxicity in HeLa cell assays. We fur-
ther showed that the R enantiomer of compound 187 (187R) was potent, but the S
enantiomer (187S) was not. Culture-independent Illumina sequencing and culture-de-
pendent EcoPlate methods showed that 187R preserved the host-associated microbial

FIG 7 Impact of 187R on P. aeruginosa T3SS master regulator exsA at the translational level. (A)
Illustration of the exsA translational fusion reporter plasmid construction. (B and C) exsA9-9lacZ (B) and
exsCEBA9-9lacZ (C) expression in the presence of 187R (250 mM) or DMSO for 6.5 h. ****, P, 0.0001.
Data represent the means of three biological replicates.
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FIG 8 Culture-independent and -dependent analyses of the microbial community. (A) Relative abundances of phyllosphere
microbiota treated with 187R, DMSO, and streptomycin overnight at the phylum level. (B) PCoA of 187R-, DMSO-, and

(Continued on next page)
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community better than streptomycin in terms of microbial community composition
and function.

The transcription and translation of T3SS master regulator exsA are regulated by
three major regulatory components, including RsmA, Crc, and Vfr/cAMP. However, we
found that 187R did not inhibit T3SS through these major regulatory components,
because either the transcription or translation of exsA was inhibited (Fig. 6B, C, and D
and Fig. 7B and C). To test whether 187R repressed T3SS via other known T3SS regula-
tory components in P. aeruginosa, we determined the impact of 187R on c-di-GMP sig-
naling, sigma factor RpoS, and nitrite reductase NirS. The results suggested that 187R
did not inhibit T3SS through these regulatory components (Fig. S5 to S7). Therefore,
we hypothesized that 187R could directly interact with the ExsA protein and promote
its degradation or modulate an unknown regulator that posttranslationally controls
ExsA. Interestingly, we observed an increased expression of exsC (Fig. 6B) and a
decreased expression of exsD (Fig. 4A), suggesting that more ExsA proteins should be
available to bind its target promoter regions to initiate T3SS gene expression; however,
187R reduced the overall ExsA protein levels (Fig. 6A), resulting in a repression of the
P. aeruginosa T3SS. In P. aeruginosa, it has been reported that the ;200-amino-acid
amino-terminal domain (NTD) of ExsA can interact with ExsA protein and cause protein
degradation (41). The binding of two ExsA monomers through NTD is crucial for the
activation of exsC transcription via cooperating binding (an ExsA monomer binds to
the high-affinity binding site and recruits another ExsA monomer to the low-affinity
binding site) (42). Together with our observations of increased exsC promoter activity
and decreased ExsA protein levels in the presence of 187R, we propose that it is likely
that 187R interacts with the NTD of ExsA, which in turn enhances the ExsA-ExsA pro-
tein binding, causing increased exsC promoter activity, and promoting ExsA protein
degradation via an unknown mechanism. Future studies will be conducted to evaluate
this potential interaction between ExsA and 187R and how this interaction affects ExsA
protein stability, ExsA-ExsA self-assembly, and/or interactions with target DNA. The regu-
latory mechanism of the other ExsA-dependent promoters, such as the exsD promoter, is
not completely understood, and previous research suggested that the transcription of
these genes might not be dependent on the cooperative binding of ExsA (41).

The impact of 187R on the P. aeruginosa host microbial community (Arabidopsis
phyllosphere) was explored by culture-independent and culture-dependent methods.
Our Illumina sequencing results suggested that compared to streptomycin, 187R did
not significantly influence the Arabidopsis phyllosphere community in terms of compo-
sition. Streptomycin has been widely used for the treatment of bacterial diseases in
public health and agriculture. It is also one of the broad-spectrum antibiotics used to
treat P. aeruginosa infection, which has led to resistance in P. aeruginosa (43). A major
limitation of culture-independent methods to examine the microbial community is
that they cannot differentiate the viable from dead microbes and they reflect the abso-
lute number of microbes in the ecosystem; therefore, the effects of treatments on the
phyllosphere may be underestimated (44). Meanwhile, microbial communities are not
only characterized by their species composition but also feature different functional
genes (for example, genes related to carbon and nitrogen metabolism) that are re-
sponsible for the microbes’ bioactivities, such as nutrient cycling and immunomodula-
tion (45, 46). It has frequently been discussed that changing the microbial composition
would not necessarily result in the alternation of a microbial community’s function due
to its high functional redundancy (47, 48). Our EcoPlate assay highlighted the effect of
187R on preserving the Arabidopsis phyllosphere metabolic functions, suggesting that

FIG 8 Legend (Continued)
streptomycin-treated phyllosphere microbiota. An Unifrac Monte Carlo significance test confirmed that all the streptomycin-
treated phyllosphere were significantly different from the DMSO-treated phyllosphere (P , 0.05); no significant difference
was observed between the 187R-and DMSO-treated phylospheres. (C) PCA of 187R-, DMSO-, and streptomycin-treated
phyllosphere carbon profiles. The average OD590 values from three repeats were used for generating the figure. *, P , 0.05
between streptomycin- and DMSO-treated groups; #, P , 0.05 between 187R- and DMSO-treated groups.
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the antivirulence compound 187R could potentially reduce the threat to host micro-
biota compared to streptomycin. In the streptomycin-treated phyllosphere, we
observed that the carbon utilization profile was greatly altered in the microbial com-
munity (Fig. 8C and Fig. S4). Since streptomycin interferes with protein synthesis by
disturbing the stability of the mRNA-ribosomal complex and induces misreading of the
genetic code (49), it is likely that the accumulation of mutated proteins hampers bacte-
rial activity and causes a decreased carbon metabolic rate. We found that 187R did not
inhibit the T3SS of two plant pathogenic bacteria, E. amylovora and D. dadantii, which
agrees with our results related to microbial composition and function. We are currently
studying the impact of 187R on other pathogenic and nonpathogenic bacteria harbor-
ing the T3SS to further understand the specificity of this antivirulence compound.

In conclusion, in this study, a potent T3SS inhibitor, 187R, targeting the T3SS master
regulator ExsA has been discovered. Using Illumina sequencing and a culture-depend-
ent EcoPlate assay, we showed the impact of 187R on preserving Arabidopsis phyllo-
sphere communities and metabolic functions in comparison with the antibiotic strep-
tomycin. To our knowledge, this is the first report showing whether and how T3SS
inhibitors influence host microbiota. To fully evaluate the potential of 187R, further
studies are needed to understand both short- and long-term effects of 187R on micro-
bial composition and function in various host plants and animals, different host tissues,
and how hosts respond to this antivirulence compound targeting bacteria. In sum-
mary, this work indicates that targeting virulence factors is a potential alternative strat-
egy for developing new antimicrobial therapies with the potential advantage of not
affecting the host-associated microbiota.

MATERIALS ANDMETHODS
Bacterial strains, plasmids, primers, and growth conditions. Bacterial strains, plasmids, and pri-

mers used in this study are listed in Table 1. Escherichia coli and P. aeruginosa were cultured in lysogeny
broth (LB) medium (tryptone at 10 g/liter, yeast extract at 5 g/liter, and NaCl at 10 g/liter) at 37°C unless
otherwise stated. LB with 200 mM NaCl and 10 mM nitrilotriacetic acid was used as the T3SS-inducing
medium for P. aeruginosa. D. dadantii and E. amylovora were grown in M9 minimal medium (32) at 28°C
for the induction of T3SS. When necessary, carbenicillin (Cb) was supplemented at a concentration of
100mg/mL.

Reporter plasmid construction. Green fluorescent protein (GFP) reporter plasmids were con-
structed by cloning the promoter regions of exsC, exsA, exsD, and exoT into pProbe-AT, a broad-host-
range vector with a promoterless gfp gene (50). To construct the exsA9-9lacZ translational fusion reporter
plasmid, the 59 UTR and the first 52 codons of exsA were cloned in frame into the translational lacZ
fusion vector pSW205 (51). The exsCEBA9-9lacZ translational fusion reporter plasmid was constructed by
in-frame cloning the region between the exsC transcriptional start site to 52 codons of exsA into the
pSW205. The forward oligonucleotide primers for constructing these two translational fusion reporters
were engineered to include an EcoRI restriction site and a lacUV5 promoter.

Screen for P. aeruginosa T3SS inhibitors. P. aeruginosa strain PAO1 harboring the exoS-gfp tran-
scriptional fusion reporter plasmid was cultured in LB medium overnight. The overnight culture was ino-
culated into T3SS-inducing medium in a 1:1,000 (inoculum:medium) ratio. The inducing medium was
supplemented with a 250 mM concentration of a candidate compound from library of 60 synthesized
compounds. The compound library was purchased from Changzhou Nimrod Biotech, Jiangsu, China.
The purity of the purchased compounds was >95%. The synthetic compound library consisted of five
different categories of compounds: category 1, phenoxy and phenylamino acetamides (compounds 187,
187R, 187S, 373, and 412 to 416); category 2, cinchona alkaloids (compounds 382 to 387); category 3,
inines (compounds 399 to 402,405, 406, and 417 to 433); category 4, aminophenyl propanamides and
acids (compounds 407 to 411); category 5, phenyl acrylates (compounds 394 to 398). Candidate com-
pounds were dissolved in DMSO. P. aeruginosa treated with an equal amount of DMSO was used as a
negative control. Bacteria were cultured in a test tube containing 5 mL of T3SS-inducing medium at
37°C for 7 h with shaking (200 rpm) prior to harvest. The harvested bacterial cells were diluted in phos-
phate-buffered saline (PBS). The GFP intensities of 10,000 cells were measured using a fluorescence-acti-
vated cell sorter (FACS; BD Biosciences, CA), and the mean fluorescence intensity was calculated using
CellQuest Pro software (BD Biosciences, CA).

Synthesis of 187R and 187S. The synthesis procedures for 187R and its enantiomers are described
in Fig. 2. (R)-2-Aminobutyric acid was reacted with 1-fluoro-2-nitrobenzene in the presence of potassium
carbonate, and the resulting (R)-2-(2-nitrophenylamino) butyric acid was then coupled with 4-aminoben-
zyl amine to obtain 187R, a yellow solid. By employing the same procedure, 187S was obtained by
replacing (R)-2-aminobutyric acid with (S)-2-aminobutyric acid (Fig. 2). Based on the high-performance
liquid chromatography and nuclear magnetic resonance spectra, the purity of 187R and 187S were 98%
and 95%, respectively. The detailed synthetic procedure is described in the supplemental material.
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Western blotting. A PAO1 overnight culture was inoculated in a 1:1,000 (inoculum:medium) ratio in
T3SS-inducing medium supplemented with 250 mM 187R or DMSO (negative control). Bacterial cell pel-
lets and supernatant were separated by centrifugation at 7 h postinoculation. For measuring the intra-
cellular ExoS and ExsA proteins, 1 mL of bacterial culture (optical density at 600 nm [OD600], ;0.7) was
collected by centrifugation, and the cell pellets were resuspended in PBS. A 2� SDS-PAGE buffer was
added into each sample, followed by boiling the mixture for 10 min. For measuring the secreted ExoS
protein in the supernatant, the supernatant collected from the previous step was centrifuged again to
remove any remaining cells. Trichloroacetic acid was added to the supernatant to reach a concentration
of 10%. Secreted protein was pelleted by a 30-min centrifugation at 13,500 rpm. The protein pellets
were resuspended in 2� SDS-PAGE buffer. The same samples were loaded on an SDS-PAGE gel as a
loading control. After electrophoresis, proteins were transferred to a polyvinylidene difluoride mem-
brane and probed with a rabbit polyclonal antibody against ExsA (1:2,000 dilution; a gift from Chao
Wang [25, 52]) or a chicken polyclonal antibody against ExoS (1:4,000 dilution; catalog number ab20031,
Abcam, United Kingdom). A mouse antibody against RNA polymerase (neoclone, USA) was used as a con-
trol for the total protein quantity. The Western blotting band intensities were quantified by ImageJ (53).

HeLa cell cytotoxicity assay. T3SS-mediated cytotoxicity was evaluated using a cell lifting assay
based on methods described previously (54). HeLa cells (1 � 105) were seeded in each well of a 12-well
plate and cultured for 18 h at 37°C with 5% CO2 in Dulbecco's modified Eagle medium (DMEM) supple-
mented with 10% fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 mg/mL). Before the
infection assay, the HeLa cell culture medium was removed from the well and the cells were washed
twice with PBS. HeLa cell culture medium without antibiotic and supplemented with 250 mM compound
or DMSO was added into each well. In this assay, the PAK strain of P. aeruginosa was used, because it
has higher and earlier T3SS expression than the PAO1 strain (55) and its T3SS is also repressed by 187R.
Wild-type PAK strain and its T3SS mutant, DpscJ strain, were cultured overnight in LB medium at 37°C.
The bacteria were collected by centrifugation, and the cell pellets were washed with PBS and resus-
pended in DMEM. HeLa cells were then infected with the bacteria at a multiplicity of infection (MOI) of
30. At 3.5 h postinfection, the medium was removed, and the HeLa cells were stained with crystal violet
after rinsing twice with PBS. The plate was washed twice with PBS, and then 200 mL of 95% ethanol was
added to the wells to dissolve the crystal violet. The OD490 of the ethanol solution with dissolved crystal
violet was measured to determine the number of cells that attached to the surface.

b-Galactosidase assays. b-Galactosidase activity was determined as described previously (56). The
samples were collected by centrifugation at 8,000 rpm for 3 min. Cell pellets were rinsed and resus-
pended in PBS. The expression levels of the reporter plasmids were determined by normalization of
b-galactosidase activity (OD420) to the bacterial growth (OD600). Three biological replicates were included
in each treatment group.

qRT-PCR analysis. The mRNA levels of exsA were measured by qRT-PCR. Bacterial cells were cultured
in T3SS-inducing medium supplemented with 250 mM 187R or DMSO (negative control) for 7 h before
harvest. An RNeasy minikit (Qiagen, Hilden, Germany) was used to isolate the total RNA. cDNA was syn-
thesized using an iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA). The cDNA level of the
exsA gene was quantified by qRT-PCR using SYBR green master mix (Applied Biosystems, CA). The
expression level of rpsL was used as an endogenous control for data analysis (57).

Statistical analysis. Two-tailed Student's t test was used to assess the inhibition of 187R on the
T3SS gene expression compared to the DMSO treatment. One-way analysis of variance combined with
Tukey’s honestly significant difference test was applied for multiple comparisons. The test was per-
formed in R (version 3.5.0) (58).

Phyllosphere collection. To test the effect of 187R on the phyllosphere microbiota, 8-week-old
Arabidopsis thaliana Col-1 plants maintained in potting soil in a growth chamber were transferred to
2-mL microcentrifuge tubes with the roots immersed in water. Leaves were sprayed twice (8 h between
each spray) with a water solution containing 35 mM 187R in DMSO, DMSO alone (solvent of 187R), or
streptomycin (200 ppm). Eighteen hours postinoculation, leaves were collected for analysis of phyllo-
sphere microbiota profiling. The collected leaves were gently washed in PBS to remove the remaining
compound and antibiotics. The washed leaves were placed in sterile tubes containing 30 mL PBS. The
phyllosphere microbiota was collected by sonicating the test tubes in a water bath sonicator for 15 min.
Samples were collected in triplicate for each treatment. Twenty to 24 plants were used for each
treatment.

16S rRNA gene Illumina sequencing and data analysis. Cell pellets were collected from the phyllo-
sphere microbiota. Genomic DNA was then extracted using the Qiagen Dneasy PowerSoil kit (Qiagen,
Germany) following the manufacturer’s instructions, and concentration was measured by Nanodrop
spectrophotometer. Approximately 10 ng of DNA was added to each PCR mixture. The V4 region of the
16S rRNA gene was amplified using the 16S_515F and 16S_806R primers with Illumina sequencing adap-
tors (59). PCR amplification consisted of 95°C for 45 s, followed by 38 cycles of 95°C for 15 s, 78°C for
10 s, 60°C for 30 s, and 72°C for 30 s (60). Peptide nucleic acid (PNA) clamps mPNA and pPNA clamps
(mPNA, GGC AAG TGT TCT TCG GA; pPNA, GGC TCA ACC CTG GAC AG) (61), which bind to and block the
amplification of mitochondria and chloroplast DNA, respectively, were added to the PCR mixture at a
final concentration of 0.75 mM. The PCR products were purified with a QIAquick gel extraction kit
(Qiagen, Germany).

Microbial community Illumina sequencing data was analyzed using Qiime version 1.9.1 (62). The open-
reference operational taxonomy unit (OTU) picking method using the GreenGenes reference database ver-
sion 13.8 (63) was performed for OTU clustering and taxonomy assignments. Principal-coordinates analysis
(PCoA) of microbial communities was performed based on the Unifrac distance matrix (64).
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Biolog EcoPlate assay. In the EcoPlate assay, the ability of phyllosphere microbial communities
treated with 187R (35 mM), DMSO, or streptomycin (200 ppm), utilizing the carbon sources were
assessed. Each EcoPlate had 96 wells containing 31 carbon sources and one blank control in triplicates.
Tetrazolium violet redox dye was used to evaluate the substrate (carbon source) metabolization. For the
EcoPlate assay, 2 mL of PBS containing the suspended phyllosphere was diluted 1:20 (vol:vol) in sterile PBS.
PBS containing the diluted phyllosphere suspension was aliquoted into each well (120 mL) of the Biolog
EcoPlate. The carbon utilization was measured as the OD590 after 48 h of incubation using a plate reader. The
results were analyzed by principal-component analysis (PCA) in R (version 3.5.0) (58) using the package
FactoMineR (65). The heatmap with clustering analysis was generated based on the average OD590 value of
each carbon source within each treatment group in R using the package gplots (66).

Data availability. The raw Illumina sequencing data were deposited in the Sequence Read Archive
of the National Center for Biotechnology Information under the accession numbers SAMN13938370 to
SAMN13938378.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.8 MB.
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