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Abstract: Many Gram-negative pathogenic bacteria rely on a functional type III secretion system
(T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity.
Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated
regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled
and constantly monitored by bacteria in response to the ever-changing host environment. Therefore,
it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease
management. This review focuses on a model plant pathogen, Dickeya dadantii, and summarizes
the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators
that were recently discovered, including the transcriptional regulators: FIhDC, RpoS, and SlyA;
the post-transcriptional regulators: PNPase, Hfq with its dependent sSRNA ArcZ, and the RsmA/B
system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory
components have also been characterized in almost all major bacterial plant pathogens like Erwinia
amylovora, Pseudomonas syringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second
half of this review shifts focus to an in-depth discussion of the innovation and development of
T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes
T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene
acylhydrazides. We also discuss their modes of action in bacteria and application for controlling
plant diseases.
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1. Introduction

Type III secretion systems (T3SSs) are well-studied protein secretion/translocation systems found
in almost all Gram-negative bacterial pathogens of plants and animals [1,2]. Structurally, the T3SSs
are highly conserved among bacteria. They are syringe-like nanomachines consisting of inner and
outer membrane rings, known as a basal body, and an apparatus that enables bacteria to inject diverse
effector proteins directly into the host cell cytoplasm, which participate in the regulation of host cell
functions to benefit the bacterial survival and multiplication [3,4]. In the plant pathogenic bacteria,
the T3SSs have attracted much attention due to their ability to elicit the hypersensitive response (HR),
a plant defense mechanism characterized by rapid cell death, in resistant or non-host plants and
induce disease symptoms in host plants [4,5]. In Erwinia amylovora, for instance, the T3SS is a major
pathogenicity factor as the T35S-deficient mutants are unable to cause fire blight disease in Rosaceous
plant hosts [6,7]. Studies of the T3SS from Pseudomonas syringae pv. tomato DC3000, which causes
bacterial speck of tomato and the model plant Arabidopsis thaliana, have provided valuable information
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for the understanding of host-microbe interactions by signifying the T3SS and its effectors as essential
players involved in the repression of plant defense mechanisms during the bacterial infection [8-10].

As is the case for many T35S-expressing pathogens, a growing number of studies have explored
novel disease management strategies using the T3SS as a target for the inhibition of bacterial
pathogenesis [11-13]. In the studies of plant pathogenic bacteria, small molecules that target and
inhibit the T3SSs have been discovered. The soft rot plant pathogen Dickeya dadantii served as the
model organism due to its well-characterized regulatory pathways of the T3SS. It has been well
established that the T3SSs from plant pathogenic bacteria are encoded by the hypersensitive response
and pathogenicity (hrp) operon [14]. Based on the similarities of operon organization and regulatory
systems, plant pathogenic bacterial irp gene clusters are divided into two groups [15,16]. The group I
hrp gene cluster includes those of P. syringae, E. amylovora, and Dickeya spp., in which the alternative
sigma factor HrpL is the master regulator that activates the expression of most hrp genes [17-19].
Ralstonia spp. and Xanthomonas spp. possess the group II hrp gene clusters, whose expression is
heavily relied on an AraC-type transcriptional activator HrpX [20,21]. Genetic and molecular analyses
have identified multiple important regulators that control the expression of T3SS in plant pathogenic
bacteria, suggesting that the regulation of T3SS is a highly modulated process during the infection of
plants by pathogens, and such regulation often occurs in a hierarchical manner.

In this review, we summarize our current understanding of the regulation of T3SS, focusing on
bacterial second messengers, transcriptional regulators, and post-transcriptional regulators that control
the T3SS in a model pathogen D. dadantii. Similar studies of T3SSs from other plant pathogens, such as
P.syringae and E. amylovora, have been thoroughly reviewed elsewhere [22-26]. Furthermore, we discuss
early innovations of the T3SS inhibitors and their modes of action in D. dadantii and E. amylovora,
highlight the recent discovery of novel T3SS inhibitors in rice pathogen X. oryzae pv. oryzae, bacterial wilt
pathogen R. solanacearum, and P. syringae pv. tomato, and provide remaining challenges and future
perspectives on the application of T3SS inhibitors for managing plant diseases.

2. Regulation of T3SS in D. dadantii

The expression of T35S in D. dadantii is governed by the master regulator HrpL. This alternative
sigma factor activates T3SS gene expression by binding to the highly conserved hrp box
(GGAACC-Ny5/16-CCACNNA) in their promoter regions. Genes such as hrpA, hrpN, and dspE,
which encode the T3SS pilus protein, a harpin, and a virulence effector, respectively, are all transcribed
in a HrpL-dependent manner [17,18,27,28]. The regulation of HrpL is achieved via two independent
regulatory cascades in D. dadantii (Figure 1) [29-32]. Transcriptionally, HrpS is a 0>* (RpoN) enhancer
binding protein, which binds the > (RpoN)-containing RNA polymerase holoenzyme and initiates the
expression of hrpL. A two-component signal transduction system (TCSTS) HrpX/HrpY is responsible for
the activation of hrpS [29,33]. Post-transcriptionally, hrpL is regulated by RsmA, a small RNA-binding
protein, which binds the 5 untranslated region of hrpL mRNA and facilitates its degradation [34].
RsmB is a non-coding RNA containing multiple RsmA binding sites that bind RsmA proteins to
antagonize their negative effect on hrpL mRNA, resulting in a positive effect on the downstream T35S
gene expression [33,35]. The GacS/GacA TCSTS has been shown to upregulate the production of RsmB
RNA in D. dadantii [31].
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Figure 1. Model of the type III secretion system (T3SS) regulation and modes of action of T3SS inhibitors
in Dickeya dadantii. The expression of T3SS master regulator HrpL is transcriptionally regulated by the
HrpX/HrpY-HrpS-RpoN pathway and post-transcriptionally regulated by the GacS/GacA-RsmB-RsmA
pathway. Several transcriptional regulators, including FIhDC, SlyA, PecS, PecT, and RpoS, regulate the
expression of T3SS genes via targeting multiply key components in the T3SS regulatory pathways.
Hfq and its dependent sRNA ArcZ form a feed-forward signaling cascade that positively control
the expression of RsmB. PNPase degrades RsmB sRNA and is also required for the stability of rpoN
mRNA. c-di-GMP signaling is involved in the FlhDC-mediated RpoN regulation and the Hfq-mediated
RsmB regulation. T3SS injects bacterial effectors into the plant cells to suppress plant immune
responses. On the other hand, plants secrete a variety of phenolic compounds that are able to regulate
the T3SS in bacteria. For D. dadantii, two plant phenolic compounds, o-coumaric acid (OCA) and
t-cinnamic acid (TCA), upregulate T3SS gene expression via the GacS/GacA-RsmB-RsmA-HrpL pathway.
Trans-4-hydroxycinnamohdroxamic acid (TS103), a plant phenolic compound derivative, represses
the expression of T3SS via the HrpX/HrpY-HrpS-RpoN-HrpL pathway. L represents negative control;
— represents positive control.

2.1. Bacterial Second Messengers Regulate T3SS

30f18

D. dadantii can infect a wide range of host plants and has the ability to survive in soil and

groundwater [36,37]. In the past decade, several regulators have been identified to be involved in the
regulation of T3SS, implying a sophisticated regulatory network that allows D. dadantii to control its
virulence gene expression to adapt to various environmental conditions. Bis-(3’-5")-cyclic dimeric
guanosine monophosphate (c-di-GMP), a ubiquitous bacterial second messenger in most major bacterial
phyla, is one of the most critical and well-studied nodes of this network [38,39]. The metabolism
of c-di-GMP is dependent on two kinds of enzymes: The GGDEF domain-containing diguanylate
cyclase (DGC) enzymes that synthesize c-di-GMP from two molecules of guanosine-5’-triphosphate
(GTP) and the EAL or HD-GYP domain-containing phosphodiesterase (PDE) enzymes that degrade
c-di-GMP to 5’ -phosphoguanylyl-(3’-5")-guanosine or two molecules of guanosine monophosphate

(GMP), respectively [40-44].
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The presence of GGDEF and/or EAL domain protein-encoding genes is abundant in many
Gram-negative bacteria. For example, Escherichia coli K-12 contains 29 genes, Vibrio cholerae contains 53,
and E. amylovora contains 8 [45-48]. In D. dadantii, genomic analysis has identified twelve gcp (GGDEF
domain-containing protein), four ecp (EAL domain-containing protein), and two egcp (EAL-GGDEF
domain-containing protein) genes. Interestingly, genes encoding the HD-GYP domain-containing
protein have not yet been annotated. Exploratory studies by Yi and colleagues demonstrated that
two PDEs, EGepB and EcpC, positively regulate the T3SS gene expression, swimming miotility,
and the production of pectate lyase (Pel), one of the major plant cell wall degrading enzymes [37,49],
whereas negatively regulate biofilm formation, suggesting a pleiotropic effect of c-di-GMP in controlling
D. dadantii pathogenesis [50,51]. These observations are also in agreement with reports from other
bacteria, suggesting that bacterial second messenger c-di-GMP plays an essential role in promoting the
transition from motile to sessile lifestyles [39,52]. Yi and colleagues further demonstrated that deletions
of egcpB or ecpC cause elevated intracellular c-di-GMP levels, which in turn post-transcriptionally
repress the expression of rpoN (Figure 1) [50]. Why D. dadantii utilizes two functionally redundant
enzymes to modulate the same biological target remains unknown. To elucidate the function of
DGCs in D. dadantii, Yuan and Tian et al. performed a phenotypical study on twelve gcp deletion
mutants and found that a DGC GcpA synthesizes c-di-GMP to repress T3SS and Pel via negatively
regulating rsmB at the post-transcriptional level and positively regulate RsmA protein levels [53].
H-NS, a nucleoid-associated protein known to activate Pel [54-56], is negatively regulated by GepA at
the level of post-transcription, which leads to the repression of smB [53]. Interestingly, H-NS is not
involved in the regulation of T35S by GepA, possibly due to its role in modulating the DNA topology
in D. dadantii [56]. Together, c-di-GMP has been shown to control the expression of T3SS in D. dadantii
via two pathways: The RpoN-HrpL pathway and the RsmA/RsmB-HrpL pathway.

The expression of T3SS in plant pathogenic bacteria is known to be repressed in nutrient-rich
media and induced in minimal media, which may correspond to the nutrient-deficient and low pH
environment in plant apoplast [32,57,58]. To study the role of carbon source in T35S regulation,
the D. dadantii strain containing a transcriptional fusion of the hrpN gene to the E. coli lacZ gene was
used as a reporter system [59]. The expression of the hrpN::lacZ fusion was under the control of
the hrpN promoter and determined by the (3-galactosidase assay. Nasser and colleagues reported
that the expression of hrpN::lacZ fusion in D. dadantii was induced 5-fold in a minimal medium
when supplemented with sucrose compared with glycerol [59], suggesting that the carbon source is
involved in T3SS regulation. Yuan et al. recently showed that citrate, one of the major intermediates
in the tricarboxylic acid (TCA) cycle, represses Pel production [60] and the T3SS gene expression
(C.-H. Yang, unpublished data) in a c-di-GMP-dependent manner in D. dadantii. Deletions of TCA
cycle enzymes reduce intracellular c-di-GMP levels in D. dadantii [60]; application of exogenous
citrate induces intracellular c¢-di-GMP via promoting the expression of gcpA while repressing the
expression of egcpB [60]. As the production of c-di-GMP has been reported to be induced by citrate in
P. fluorescens [61], these data suggest that c-di-GMP might generally serve as an intracellular signal
that regulates T3SSs in response to various environmental signals.

The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine
pentaphosphate (pppGpp) are stringent response regulators that globally reprogram bacterial
transcription via interacting with RNA polymerase and its binding protein DksA [62,63]. Several recent
studies highlighted the role of (p)ppGpp in regulating T3SS in E. amylovora and P. syringae,
showing that the (p)ppGpp-triggered T3SS gene expression might rely on the RpoN-HrpL cascade in
E. amylovora [64-67]. However, whether this regulation occurs in D. dadantii has not yet been determined.

2.2. Transcriptional Regulators Control T3SS

The T3SS and flagellum are evolutionarily closely related due to their similarities in structure,
function, and sequences of their main components [68-71]. In P. syringae, flagellin could be translocated
into plant cells by the T3SS and induce immune responses [72]. Genetically, the master regulator



Microorganisms 2020, 8, 1956 50f 18

of the flagellar assembly genes FIhDC has been shown to be essential for the activation of T3SS
genes in D. dadantii and Pectobacterium carotovorum [51,73-76]. A detailed genetic study conducted
by Yuan et al. demonstrated that D. dadantii FIhDC transcriptionally initiates the expression of ecpC,
which regulates the T3SS through the c-di-GMP-mediated RpoN-HrpL pathway (Figure 1) [50,51].
Interestingly, the homolog of EcpC, named YhjH, in E. coli is also positively regulated by FIhDC.
However, different from E. coli, the alternative sigma factor (028) FliA, which is under the control of
FIhDC, is not required for the activation of ecpC via FIhDC in D. dadantii [51,77]. Additionally, since the
consensus FIhDC binding sequence, AA(C/T)G(C/G)N2.3AAATA(A/G)CG [78,79], is not present in
the promoter region of ecpC, the activation of ecpC by FInDC might be indirect. FInDC and YcgR,
a PilZ domain protein, have also been shown to be involved in the regulation of T3SS through the
RsmA/RsmB system (Figure 1) [51] and the function of YcgR has been shown to be activated by the
binding to c-di-GMP [80,81]. However, in vitro studies demonstrated that their contributions to T35S
are not significant compared with the FIhDC-EcpC-RpoN-HrpL pathway [51].

The sigma factor RpoS is the master regulator for the stress response in bacteria [82]. In E. coli,
RpoS is degraded by the ClpXP protease with the assistance of the recognition factor RssB [83-85].
RpoS from P. carotovorum has been reported to affect the production of Pel, T35S gene hrpN expression,
and virulence in plant through its regulation on RsmA [86]. Subsequent studies from D. dadantii and
E. amylovora showed similar findings with a more detailed regulatory mechanism proposed in D. dadantii:
The ClpXP-RssB-RpoS regulatory cascade controls the expression of rsmA, which post-transcriptionally
affects HrpL; RpoS represses hrpL transcription without affecting HrpS or RpoN (Figure 1) [87,88],
suggesting that a novel RpoS-HrpL pathway might exist in D. dadantii.

SlyA belongs to the member of the SlyA/MarR family transcriptional regulator [89]. In D. dadantii,
Sly A was first characterized as a Pel regulator, and the deletion of slyA significantly reduced disease
symptoms in planta [90]. Since SlyA has been reported to regulate the expression of T3SS in
Salmonella enterica serovar Typhimurium [91], the role of SlyA homologue in controlling D. dadantii
T3SS was investigated. Zou and colleagues reported that SlyA negatively regulates HrpL via two
pathways: It upregulates the expression of rsmA and downregulates the transcription of hrpS that is
independent of the TCSTS HrpX/HrpY (Figure 1). Interestingly, despite its negative impact on hrpL,
SlyA positively regulates the expression of hirp regulon genes, such as hrpA and hrpN, in parallel with
HrpL (Figure 1) [92], suggesting that multiple factors might be involved in the transcriptional regulation
of T3SS genes in D. dadantii. Indeed, PecS, another MarR family transcriptional regulator [93,94],
and PecT, a LysR family transcriptional regulator [37], have been shown to repress the transcription of
hrpN (Figure 1) [59]. In vitro DNA-protein binding and DNase I footprinting analyses confirmed that
PecS directly interacts with the promoter of hrpN to repress its transcription [59]. The mechanism of
PecT-mediated regulation on hrpN remains unclear. Nevertheless, it will be interesting to know how
and under what circumstances these transcriptional regulators modulate T3SS regulon gene expression
in a cooperative or rather competitive manner.

2.3. Post-Transcriptional Regulators Control T35S

Post-transcriptional regulation is an essential mechanism to control gene expression in
bacteria [95,96]. Progress made in D. dadantii has identified several post-transcriptional regulators that
control the expression of T3SS. Polynucleotide phosphorylase (PNPase) is one of the post-transcriptional
regulators conserved in bacteria and eukaryotes [97-99]. Known as an exoribonuclease, PNPase is
majorly involved in RNA decay [100]. The PNPase homologues in Yersinia spp. and Salmonella spp.
have been reported to control T3SS [101,102]. The deletion of pnpase in D. dadantii significantly
increased the transcriptional activities and mRNA levels of hrpA, hrpN, and DspE, suggesting that
PNPase downregulates T3SS through HrpL in D. dadantii [103]. Further analyses confirmed that
PNPase negatively regulates the stability of rpoN mRNA, which in turn affects the transcription of
hrpL; PNPase also stimulates the decay of h*pL mRNA by reducing the amount of available RsmB
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transcripts (Figure 1) [103]. In Salmonella and E. coli, PNPase has been reported to be essential for the
RNA decay of RsmB homologues CsrB [104,105].

The expression of RsmB was recently shown to be regulated by Hfq, an RNA chaperone [106,107],
via a feed-forward signaling circuit in D. dadantii (Figure 1) [108]. Hfq and the Hfg-dependent
small regulatory RNA (sRNA), ArcZ, repress the translation of pecT. PecT auto-inhibits its own
transcription [109] and, more importantly, downregulates the transcription of rsmB that contributes to
the Hfg-mediated regulation on the T3SS and Pel. As the PecT homologue HexA is also known to
repress RsmB in P. carotovorum [110], it is reasonable to speculate that this regulation occurs at the level
of transcription. RsmB is also post-transcriptionally regulated by Hfq since the deletion of fg elevated
the intracellular c-di-GMP levels owing to the increased productions of two DGCs, GepA and GepL.
Both DGCs are required for the Hfg-mediated T3SS regulation. In E. amylovora, Zeng et al. found that
Hfq and ArcZ were required for the virulence in host plants and the T35S-dependent HR in non-host
tobacco plants [111,112], but the mechanism has not yet been reported.

3. Discovery of T3SS Inhibitors in Plant Pathogens and Their Regulatory Mechanisms

Small molecules that could specifically inhibit the synthesis or functionality of the T3SS are referred
to as T3SS inhibitors. Unlike traditional antibiotics that often target bacterial survival, T3SS inhibitors
display negligible effects on bacterial growth, thus reducing the selective pressure for the development
of resistance [12,113,114]. In plant pathogenic bacteria, extensive studies have led to the discovery of a
group of plant-derived compounds and several chemically synthesized compounds that modulate the
expression of T3SS in major plant pathogens (Table 1). Further studies detailed the mode of action of
these compounds and investigated their potential for disease management.

Table 1. Compounds that regulate T3SS in some major plant pathogens.

Known Modes of
Compound Structure Action on T3SS in References
Plant Pathogens

Induce T3SS via the
RsmA/RsmB-HrpL
pathway in
D. dadantii; inhibit
T3SS in E. amylovora [32,115,116]
and T3SS in X. oryzae
pv. oryzae via the
HrpG-HrpX
regulatory cascade.

o-coumaric acid

Induce T3SS in
D. dadantii; inhibit [32,115]
T3SS in E. amylovora.

(o]
o
OH
OH
e}
t-cinnamic acid @A\J\OH
Q
<, Inhibit T3SS via the
-coumaric acid OH HrpS-HrpL pathwa [117]
p P PLP y
in D. dadantii.
HO
Inhibit T3SS via the
o RpoN-HrpL pathway,
" _on the
N HrpX/HrpY-HrpS-HrpL [118]
pathway, and the
" RsmB-HrpL pathway

in D. dadantii.
Inhibit T3SS via
targeting HrpS in [115]
E. amylovora.

trans-4-hydroxycinnamodydroxamic acid

Benzoic acid
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Plant Pathogens
Coe = Inhibit T3SS in
Salicylic acid dL E. amylovora. [115]
OH
P! Inhibit T35S via
4-methoxy-cinnamic acid s targeting HrpL in [115]
LN E. amylovora.
0
- Inhibit T3SS via the
OH -
trans-2-methoxycinnamic acid HrpG-HrpX . [116]
o regulatory cascade in
lH X. oryzae pv. oryzae.
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- " 7° HrpG-HrpX
trans-2-phenylcyclopropane-1-carboxylic-acid EJ/A f regulatory cascade in [116]
X. oryzae pv. oryzae.
i Inhibit T3SS via the
trans-2-methylcinnamic acid HrpG-HrpX . [116]
regulatory cascade in
X. oryzae pv. oryzae.
Inhibit T3SS via
Umbelliferone targeting HrpG in [119,120]
R. solanacearum.
Inhibit multiple T3SS
B,
N’-(2,3,4-trihydroxy-benzylidene)- - A1ytovor; N [121,122]
. T3SS via targeting
hydrazide HroB i
rpBin
R. solanacearum.
Inhibit T3SS via
4-nitrobenzoic acid t?g:;;:ég;ffn;n
N —(2,4—d1hyd}1;0)(;};biegzyhdene)— inhibit T3SS via [121,122]
ydrazide targeting HrpL in E.
amylovora.
2-nitro-benzoic acid N c Inhibit T3SS via
N’-(3,5-dichloro-2-hydroxy-benzylidene)- | ) targeting HrpB in [122]
hydrazide st R. solanacearum.

3.1. Plant Phenolic Compounds as T3SS Inhibitors

Plant phenolic compounds are one of the most widespread secondary metabolites in plants.
They range from low molecular weight and single aromatic ringed compounds to large and
complex-polyphenols and are involved in diverse physiological activities in plants, such as
pigmentation, growth, and defense mechanisms [123]. Plant phenolic compounds also function
as signal molecules that either induce or repress the microbial gene expression during the interactions
between plants and microbes [124]. As the expression of D. dadantii T35S genes was induced in
planta [125], Yang et al. discovered that two plant phenolic compounds, o-coumaric acid and
t-cinnamic acid, positively regulated the expression of T3SS genes in D. dadantii [32]. o-coumaric acid
upregulated hrpL at the post-transcriptional level via the RsmA/RsmB system and had no impact on the
HrpX/HrpY-HrpS-HrpL pathway. Although o-coumaric acid and ¢-cinnamic acid are the biosynthetic
precursors of salicylic acid, which plays an important role in plant defense responses [126,127],
application of salicylic acid did not affect the expression of T3SS in D. dadantii [32].
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To identify potential phenolic compounds as T3SS inhibitors, Li and colleagues evaluated the
effects of 29 analogs and isomers of o-coumaric acid and t-cinnamic acid on the transcriptional
activity of hrpA:gfp fusion in D. dadantii. One compound, p-coumaric acid, was shown to repress the
expression of T3SS genes via the HrpS-HrpL pathway, as the addition of 100 uM p-coumaric acid
significantly reduced the transcriptional activities and mRNA levels of hrpS and hrpL without affecting
the bacterial growth [117]. p-coumaric acid is an intermediate in the phenylpropanoid biosynthesis
pathway. Phenylpropanoids are plant secondary metabolites that act as defense molecules in response
to microbial attack [128,129]. It is worth noting that the discovery of p-coumaric acid as a T3SS inhibitor
has provided fundamental aspects for compound modification and greatly encouraged the innovation
of chemically synthesized plant phenolic compound derivatives. A subsequent library screening of
50 p-coumaric acid derivatives identified trans-4-hydroxycinnamohydroxamic acid as a T3SS inhibitor
in D. dadantii. The same study found that this synthetic compound increased the inhibitory potency
towards T3SS by eightfold compared with the naturally occurring p-coumaric acid [118]. Furthermore,
trans-4-hydroxycinnamohydroxamic acid was shown to repress hrpL transcriptionally through both the
RpoN-HrpL pathway and the HrpX/HrpY-HrpS-HrpL pathway. Trans-4-hydroxycinnamohydroxamic
acid repressed rsmB via unknown mechanisms, negatively contributing to the post-transcriptionally
regulation of hrpL [118].

Using similar strategies as Li et al. [117,118], Khokhani and colleagues reported several plant
phenolic compounds and derivatives that can modulate T35S in E. amylovora [115]. o-coumaric acid and
t-cinnamic acid, which induced the expression of T3SS in D. dadantii [32], repressed the E. amylovora T3SS.
The T3SS inhibitors of E. amylovora also include benzoic acid, salicylic acid, and 4-methoxy-cinnamic
acid. Benzoic acid negatively regulated hrpS expression, while 4-methoxy-cinnamic acid repressed
HrpL, respectively. HR analysis demonstrated that co-infiltration of E. amylovora with benzoic acid
or 4-methoxy-cinnamic acid reduced the HR development in Nicotiana tabacum cv. Xanthi leaves,
suggesting that both phenolic compounds are functionally inhibiting T3SS in planta. Earlier studies on
phenylpropanoid metabolism in Vanilla planifolia have reported that 4-methoxy-cinnamic acid is one of
the intermediates in the biosynthetic conversion of cinnamic acid to benzoic acid [130]. Benzoic acid
could be produced via the conversion of t-cinnamic acid to salicylic acid [131].

X. oryzae pv. oryzae is the causal agent of bacterial blight, one of the major rice diseases in the world.
X. oryzae pv. oryzicola, which causes the bacterial leaf streak disease, is another rice pathogen [132].
Both pathogens process a T3SS encoded by the group II irp gene clusters, in which HrpG and HrpX
are two key regulators [16,21,30,133]. HrpG is a response regulator of the OmpR family of TCSTS,
which positively regulates the expression of hrpX. HrpX is an AraC family transcriptional regulator
responsible for activating the transcription of hrp genes [21,133]. By combining the transcriptional
screening of the T3SS genes and HR assay in tobacco, Fan et al. identified four plant phenolic compounds,
including o-coumaric acid, trans-2-methoxycinnamic acid, trans-2-phenylcyclopropane-1-carboxylic
acid, and trans-2-methylcinnamic acid, actively inhibited the T3SS gene expression in vitro likely
through the HrpG-HrpX regulatory cascade. Application of these T3SS inhibitors reduced the HR of
X. oryzae pv. oryzae in non-host plants and the water soaking and disease symptoms of the pathogen
in rice [116]. Since no impact on other virulence factors of X. oryzae pv. oryzae, such as the type II
secretion system (T2SS), exopolysaccharide (EPS), and lipopolysaccharide (LPS) [134,135], was observed,
the reduced virulence caused by the plant phenolic compounds in X. oryzae pv. oryzae is T355-dependent.
A recent study was conducted to further understand the response of X. oryzae pv. oryzae to o-coumaric
acid using transcriptomic analysis [136].

In R. solanacearum, the bacterial wilt pathogen of tomato, much progress has been made in
identifying coumarins as T3SS inhibitors. Coumarins, consisting of fused benzene and a-pyrone rings,
are a family of plant-derived secondary metabolites containing a large class of phenolic substances [137].
Members of the coumarins have been extensively studied mainly for their antimicrobial properties [138].
Umbelliferone is a 7-hydroxycoumarin that has recently been reported to repress the expression of
hrpG and multiple T3SS regulon genes in R. solanacearum [119,120]. It reduced biofilm formation and
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suppressed the wilting disease process by reducing the colonization and proliferation of R. solanacearum
in planta [120]. Besides, six plant phenolic compounds and derivatives, including p-coumaric acid,
that repress the T3SS in D. dadantii, failed to modulate the expression of R. solanacearum T3SS genes [122].

3.2. Salicylidene Acylhydrazides and Their Derivatives as T3SS Inhibitors

Salicylidene acylhydrazides are one of the earliest T3SS inhibitors that were first identified
through large-scale chemical screening approaches in Yersinia spp. [139-141]. Later studies have
shown that salicylidene acylhydrazide family compounds actively against T3SSs from other human
pathogenic bacteria, including S. enterica, Shigella, Chlamydia, P. aeruginosa, and enteropathogenic
E. coli [142-150]. However, whether salicylidene acylhydrazides inhibit the plant pathogenic
bacterial T3SSs remained unknown. To address this question, Yang and colleagues screened a
small library of compounds. They found that several salicylidene acylhydrazides repressed the
expression of T35S genes, including the master regulator encoding gene hrpL, in E. amylovora [121].
Microarray analysis of E. amylovora treated with compound 3, also known as ME0054 [benzoic acid
N’-(2,3,4-trihydroxy-benzylidene)-hydrazide] [141], confirmed its inhibitory impact on T3SS, as the
majority of the 38 known T3SS genes was downregulated [121]. In addition, compound 3 suppressed
the production of EPS amylovoran, one of the major pathogenicity factors of E. amylovora [7,151],
and reduced the disease development of E. amylovora on crab apple flowers [121].

Puigvert and colleagues recently applied a similar approach to the T3SS of R. solanacearum
to discover T3SS inhibitors [122]. Three synthetic salicylidene acylhydrazide derivatives, ME0054,
MEOQ055 [4-nitrobenzoic acid N’-(2,4-dihydroxy-benzylidene)-hydrazide], and ME(0177 [2-nitro-benzoic
acid N’-(3,5-dichloro-2-hydroxy-benzylidene)-hydrazide] [141,152], were shown to inhibit the
expression of T3SS genes through the inhibition of the regulator encoding gene hrpB [122]. All three
salicylidene acylhydrazides could suppress the multiplication of R. solanacearum in planta and protect
tomato from bacterial speck caused by P. syringae pv. tomato [122]. Since Yang et al. reported that
ME0054 and MEQ055 are T3SS inhibitors in E. amylovora [121], these findings suggest that salicylidene
acylhydrazides and their derivatives are effective against different plant pathogenic bacteria.

4. Conclusions and Perspectives

Bacterial plant diseases, such as bacterial wilt, fire blight, soft rot, citrus greening, and bacterial
leaf blight of rice, cause significant economic losses ($100M) annually on a global scale. Current control
options are limited and involve applying chemicals, copper, and antibiotics, and biological control
agents like bacteriophage [113,153]. In the field of fire blight management, for instance, three antibiotics
have been used, including streptomycin, oxytetracycline, and a newly registered antibiotic kasugamycin.
They are proven to be the most effective method in controlling fire blight in apple and pear orchards
in the United States [154,155]. However, the widespread of resistance to antibiotics has placed major
constraints on antibiotic usage. An increasing number of studies has implied the preexistence of
antibiotic-resistance genes in environmental microbiome, such as soil, ground water, phyllosphere,
and animal gut, before introducing antibiotics [114]. In addition, the extensive application of antibiotics
in agriculture could greatly endanger human health as antibiotic-resistance genes are able to transfer
between bacterial species via horizontal gene transfer [156]. Thus, the discovery and development of
alternative control methods for controlling bacterial plant diseases are urgently needed.

T3SS is an essential virulence factor in many gram-negative bacterial pathogens [1,2].
Plant pathogenic bacteria use T3SSs to translocate various effector proteins into host cells to manipulate
plant signaling behaviors and repress host immune responses [4]. The innovation of novel molecules
that specifically target and inhibit primary virulence factors, such as T3SS, without lethal selective
pressure serves as a compelling control option compared with conventional antibiotics. However,
unlike antibiotics, often with known modes of action, the mechanisms of newly discovered virulence
inhibitors are not well established in bacteria. This could be due to the lack of fundamental
knowledge for the regulation of virulence factors and will be facilitated by analyzing the landscape of
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bacterial responses to virulence inhibitors at the whole-genome transcription level via next-generation
sequencing techniques [136].

In the model microorganism D. dadantii, several regulatory components, including transcriptional
and post-transcriptional regulators, sSRNAs, and bacterial second messengers, have been reported
to regulate the T3SS (Figure 1). The majority of these regulators, like c-di-GMP, are genetically and
functionally conserved between different bacterial species, implicating that small molecules proven to
be effective in one bacterium can also be applied in other bacteria. Several exemplary studies have
already proved this concept via studying the impact of plant phenolic compounds and salicylidene
acylhydrazides on T3SSs in various animal and plant pathogens [118,121,122]. Both small peptides
and molecules (natural or synthetic) have been extensively studied in human pathogens P. aeruginosa
and V. cholerae due to their impact on the c-di-GMP signaling. These molecules exert their function
via binding to c-di-GMP directly, affecting the enzymatic activity of DGCs that synthesize c-di-GMP,
or mimicking c-di-GMP as a competitor in bacteria [157-160]. However, similar studies have not been
reported in plant pathogenic bacteria, and the idea of using small molecules that target c-di-GMP for the
management of plant diseases needs to be further evaluated. On the other hand, controlling bacterial
diseases using T3SS inhibitors may raise a concern whether they will interfere with the T3SS in some
non-pathogenic or host beneficial bacteria that is also important for host interactions [161]. Ecologically,
T3SS has been shown to contribute to the interaction between bacteria and fungi in soil and related
habitats [162]. Thus, besides the capacity for disease management, the impact of T3SS inhibitors on the
host microbiomes and the host plants should be monitored and evaluated.

Another challenge for the T3SS or any other virulence inhibitors is a successful implementation in
the field. Unlike laboratory conditions, most commercially grown plants face fluctuating environmental
conditions, such as sunlight, precipitation, and temperature. Therefore, it is important to evaluate
the stability and efficacy of T3SS inhibitors under various environmental conditions. For example,
a recent study showed that oxytetracycline and kasugamycin could be degraded by sunlight and early
evening application is suggested to maximize the efficacy in controlling fire blight in the field [163].
In 2014 and 2015, we conducted field assays using a phenolic T3SS inhibitor, trans-4-phenylcinnamic
acid, against fire blight on apple trees. Our results showed that it reduced blossom blight with an
efficacy similar to kasugamycin at a concentration of 5 mM (Yang and Sundin, unpublished data),
suggesting that application of T3SS inhibitor is a promising alternative method for controlling fire
blight in the field. Meanwhile, trial application and evaluation of T3SS inhibitors on other bacterial
plant diseases are planned. With more new discoveries, these antibiotic alternatives are expected to
make agriculture more prepared for the upcoming challenges from continuously evolving pathogens.
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